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I. INTRODUCTION

Scattering of a TE electromagnetic wave by a conducting circular

cylinder with an infinitely long axial slot was computed in [1] and [21

by three different methods: numerical solution of the aperture field

integral equation, numerical solution of the electric field integral equa-

tion, and numerical solution of the magnetic field integral equation. The

method of numerical solution of the electric field integral equation was also

used in [3]. When the slot is so narrow that the field inside the cylinder is

a small fraction of the incident field, the field inside the cylinder can not

be accurately determined by the method of numerical solution of the elec-

tric field integral equation because, in this method, the field inside the

cylinder is the sum of the incident field and the field due to the numeri-

cally calculated electric current on the surface of the cylinder. The

incident field is the field that would exist if the cylinder were absent.

Similarly, numerical solution of the magnetic field integral equation will

not accurately determine the field inside the cylinder when this field is

a small fraction of the incident field. Furthermore, the magnetic field

integral equation applies only to a conducting cylindrical shell of finite

thickness. The scattering problem was also formulated as a dual series

problem and solved by techniques borrowed from the Riemann-Hilbert problem

in complex variable theory [4]-[8].

In the present report, we solve the problem of scattering by an

infinitesimally thin conducting circular cylindrical shell with a narrow

but infinitely long slot by means of the aperture field integral equation.

As in (2], we use the method of moments to obtain a numerical solution of

the aperture field integral equation. In contrast to the pulse expansion

functions and point testing functions used in [1], we use expansion
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functions that satisfy the edge conditions and test with non-negative

powers of 0 where 141 is the angular distance from the center of the 
,1

slot aperture. In comparison with [9, pp. 1392-1398] where only one

expansion function is used, the aperture field integral equation is

point matched, and no numerical calculations are performed, we use up

to 4 expansion and testing functions and calculate fields at the center .

of the cylinder and at the center of the slot aperture.

In our formulation, the elements of the moment matrix are evalu-

ated by replacing each expansion function by a very large but finite

number of terms in its Fourier series with respect to . Bessel func-

tions of large order are approximated by means of Debye's asymptotic

expansions [10,p. 366]. To obtain a moment matrix that remains well-

conditioned as the frequency approaches a resonant frequency of the

associated cavity, we choose expansion functions so that the magnetic

field of only one of them contains the resonant magnetic field. The

associated cavity is the cavity enclosed by the complete circular cylin-

drical surface. The complete circular cylindrical surface is the con-

ducting shell with the slot covered by a conducting surface whose radius

of curvature is the same as that of the shell. The magnetic field of an

aperture electric field expansion function is the magnetic field that

exists inside the cylinder when the tangential electric field vanishes

on the conducting circular cylindrical shell and is equal to the expan-

sion function in the slot. The resonant magnetic field is the magnetic

field associated with the resonant electric field. The resonant electric

field is the interior electric field whose component approaches zero on

the complete cylindrical surface as the resonant frequency is approached.

i.
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So constructed, our moment solution remains accurate when the associated

cavity is resonant. A computer program was written to implement our solu-

tion. This computer program will be described and listed in a forthcoming

report.

II. MATHEMATICAL FORMULATION

The formulation for the TE excited cylindrical shell is similar to

that for the TM excited cylindrical shell in [11]. Furthermore, the com-

puter program that was written to implement it is similar to the one

in [121. An infinitesimally thin, perfectly conducting circular cylin-

drical shell of radius a having a slit aperture of half angle 4o is
0V

illuminated by a TE polarized plane wave. In terms of the polar coordi-

nates (p, ,z), the equation of the shell is (p-a, < ' < 21-l 0 ) and the

incident magnetic field Hi is taken to be

Hi e u JkPcos(lt )

where a time factor ej t has been assumed and suppressed. See Fig. 1. ,

The incident magnetic field is the magnetic field that would exist if

the shell were absent. In (1), u is the unit vector in the z direction, "
-z

a is the angle of the direction from which the incident wave comes, and

k - wVii is the wave number where ji and c are, respectively, the per-

meability and permittivity of the medium surrounding the shell. Our ob-

jective is to find the electric and magnetic fields everywhere in Fig. 1.

We close the aperture with an infinitely thin curved conducting %

strip whose equation is (p-a, W < t o) and,as shown in Fig. 2, we place

the magnetic current M on the right-hand side of the closed aperture and

-M on the left-hand side of the closed aperture. These magnetic currents
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restore the tangential electric field in the aperture. The situation in

Fig. 2 will be equivalent to that in Fig. I if the tangential magnetic

field is continuous across the closed aperture. Thus, since the magnetic

field of a TE wave is in the z direction, we require that

Vp = a

b

where u H (-M) is the magnetic field due to -M placed on the region b
z -

, a
side of the closed aperture in Fig. 2, u H (M) is the magnetic field due

-z z -

to M placed on the region a side of the closed aperture in Fig. 2, and

u H is the magnetic field that would exist if the incident wave impinged
-z z

on the conducting shell with its aperture closed, i.e., on the conducting

circular cylinder of radius a. Region a is the region for which p > a.

Region b is the region for which p < a.

Equation (2) is recast as

H b(-M) - H a(M) - Hs , (3) 9

z - z {~~<

We let

M . u (Me + M°) (4)

where Me is even in and M ° is odd in . Because the magnetic field S,

due to u Me is even in q and that due to u M0 is odd in , (3)

decomposes into

b e a e sce P
H (-uM) H M) H (5)z -z z -z z

b o Ha Hsco, (6)
z --z z -z z 1W <r

z ft" f,

__;-; .. 'd ~ ~ ......... .. ' . .ft.,,,. I' € ".'. ' .. ''''.'.,'
i
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1sce is thC sco SC
where Hs c  is the even part of H and Hs t  is the odd part of Hs t

Seeking an approximate numerical solution to (5), we let

Me I V eMe (7)

where

/o 2 J- 2  :

0 )2

e
M. = (8)J

0, otherwise

The expansion functions (8) are reasonable because the equivalent magnetic

current for a narrow but infinitely long slot in a planar conducting screen

of infinite extent excited by a wave TE to the slot axis has / w2 - x2

an x./ 2  2
and x/ w2 - x terms [13, eq. (44)] where w is one half of the slot width

and lxi is the distance from the center of the slot. Substitution of (7)

into (5) gives

S[H (-euM) - a( = sce (9)

In (9), H b(-U M ) is the z component of the magnetic field in region a

of Fig. 3 and Ha (U M e) is the z component of the magnetic field in region b

of Fig. 3. The magnetic fields in Fig. 3 are obtained by solving the boundary

value problem in which EV the P component of electric field, is continuous

at p = a where it is given by

e N

E = -Me (10) *_4,

In terms of the elementary wave functions described in [14 , Sec. 5-1],



p.-.

S6,

= 
7

I

u .

Fi.3 Situation in which Haand Hbof ()eit
z ,,
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Ha(u Me Se Hn2n(kp) cos (n$)

n-0 H(2 ) ' (ka)

(11)

Hb (-u M) .S J(kO) cos (mS)
Z z j 1 iJ'(ka)

where n =Vji7FE and S e is an unknown coefficient. It is evident from
jn

CL4 , eq. (5-19)] that

H

E in z (12)
(kp)

where E is the 0 component of the electric field in Fig. 3 and H is the

z component of the magnetic field in Fig. 3. Substituting (11) into (12)

and using (10), we obtain

Se

Me - cos (n$) (13)j in

Se given by

From (13), S is the Fourier coefficient of M n
n j

Sin " - J Mj($) cos (n4) d4 (14)

0

Here, c is Neumann's number lee

1 n n 0

n = (15)

2 n>1

Substitution of (8) into (14) gives

En ( /J)-2cos (n) d$ (l.
Se n 0 _______ (16)
in 2Trfo -1

S0)2

The coefficient S e is evaluated in Appendix A.
in
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Using (11) and the Wronskian [14, eqs. (D-12) and (D-17)]

(ka) H(2 ) ' (ka) - Jn(ka) H(2 ) (ka) - _ 2a (17)
Jn n n ka

we obtain

b-Ma 2 SncOS (n) (18)
nH Jn(ka) H'(2 ) (ka)

n n

which, when substituted into (9), gives

4 00 Se cos(n4) sce
2 Ve ( I jn H H z Ip=al <  (19)
rka 1 1 i n0 J'(ka) H (2 ) (ka)

n n

It is evident from [14, eq. (5-116)] that

00 n jn( -c)[H ]p-a - -H(2)' (20)n--c H (ka)

n
The even part of (20) is given by

sce 4j 00 Eni ncos (na) cos (n )

[H J -- -- (2) (21)z p-a T ka n- H 2

n0 2H (ka)n

Substitution of (21) into (19) and subsequent multiplication by Tmka/4

give

4 e 0 S e (n) 0 Cn cos (n) cos (n)
J1 ( I n jr I W osn os(

J n-0 J(ka) H (2 ) (ka) ninO 2H(2 ) (ka)
n n n (22)

Seeking an approximate numerical solution to (6),

we let

4 0 0
M - VM (23)

j.l 

_ 

J

where

40
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O/ )2
j-10, I 1 ! y

/- (,/,o)20

02

= (24)

0, otherwise

Proceeding as in the development (9) - (22), we obtain

4 CO S sin (n ) Co jn

V° 0n1 jn 2)ka) I sin(na) sin(n )j< (25)
J11 i. J'(ka) H(2 )' (ka = n-l H(2) (ka) -

n n n

where

*o
so 1 0 0 (*) 2j-lsin (nO) dO

Jn =S (26)

-0 1 - (000)2

The coefficient S 0  is evaluated in Appendix A.
jn

When the frequency is very close to a resonant frequency of the

associated cavity, there is an integer p such that IJ'(ka)I is extremely
p

small. In this case, it can be seen by the following reasoning that any

numerical method of solution will fail to accurately determine Ve. The

four cos (po) terms on the left-hand side of (22) become so large that

none of the other terms can be discerned. As a result, the only informa-

that can be extracted from (22) is that

V e; Se - 0 (27)v~lj jp

e e e e ;
This single equation is not sufficient to determine V1, V2, V3, and V4.'

There should be no difficulty in solving (25) numerically when

IJ;(ka)I is very small because J'(ka) does not appear in (25). However,

01
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if IJ' (ka)l is very small where p is a positive integer, then numerical

solution of (25) will be just as difficult as that of (22). -

III. ALTERNATIVE EXPANSION FUNCTIONS

In this section, the expansion functions are changed in order to

eliminate the indeterminacy encountered in the last two paragraphs of

Section II. If tJ;(ka)I is extremely small, (7) is replaced by

4~ -

where

W J;(ka) e

(29)

M - M + C , MiJ-2,3.4

where

C _Se /S e (30)
j j lp

Comparing (28) with (7) and using (29), we obtain

4
Ve=JI^e + I Ce ^eV J(a, 1  i V

(31)

IV, VJ-2,3,4

In view of (30), substitution of (31) into (22) gives

S e i cos(p) CO Sin cos (n4)

2 V 1  (2)' +JV'(ka) I 1()
H (ka) p n-O J '(ka) H (2)'
pn~p n n ~

+ e- enl

J12 Vjn- J' (ka) H''(ka)
n~p n n

%Vf'
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00 Edj cos (na) cos (n0)(2
I (32), ka

n0 n

Numerical solution of (32) should not be difficult when IJ' (ka)j is very
p

small because, in contrast to (22), (32) does not contain any huge cos(p4)

terms which obscure all the other terms.

If IJ'(ka)I is very small, (25) is retained. However, if lJ' (ka)!
0p

is very small where p is a positive integer, then (23) is replaced by

46

where L(3

0

where
CO .- 0 0s (35)

Comparing (33) with (23) and using (34), we obtain

4
V1 = J;(ka)~ 2.o + I Ci

p 1 1-2 1

(36)

L, = , M i9J-2,3,4
In view of (35), (36) causes (25) to be replaced by

S 0  sin(p4) 00 S0sin (n4)

2 1 (2)' p (2)J'ka
H k) P nlJ(ka) H n (ka)

4  
00(S 

0  + c0 So ) sin (n4)
+ 11 n j n)

j2 n-li J'(ka) H n (ka)

nO n

n
AS,
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Equation (37) is valid for p > 1. If p - 0, we revert to (25). Numerical

solution of (37) should not be difficult when IJ'(ka)l is very small because,
p

in contrast to (25), (37) does not contain any huge sin (p ) terms which

obscure all the other terms.

Equations (5) and (6) can be viewed as operator equations. For

example, (5) is

LMe -g (38)

where L is an operator and g is a known function. Now, (18) is LMe where
j

is given by (13). Since (8) was not used in its derivation, (18) can

be generalized to mean that, given an even 27 periodic but otherwise arbi-

trary function f(O), Lf is the right-hand side of (18) where {Se I are the
jn

Fourier coefficients of f. Taking f - cos (po), we obtain

L(cos(pO)) - 2 cos (po) (39)
wTka J;(ka) H2(ka)

p p ka

When IJ'(ka) is very small, the expansion functions {Me, J-1,2,3,4} are
p j

not good because each one of them contains cos (p4) so that all of the

functions {L(Me), J-1,2,3,41, being roughly proportional to cos (p4), are

nearly indistinguishable from each other. The expansion functions

j-1,2,3,4} are better because Mj, which contains cos (p4), is normal-

ized so that L remains finite, and none of the functions {p, j-2,3,4}

contains cos (p). Therefore, none of the functions {L4e , J-f2,3,4} con-

tains cos (p4). Since none of them are dominated by cos (p4)), the

functions {Lfe, J-2,3,4} are easily distinguishable from each other and

from L^.
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IV. TESTING FUNCTIONS

In this section, 4 linear equations are extracted from the functional

equation (32) by multiplying (32) by each of 4 even functions called testing

functions and integrating from -0o to 0o with respect to 4. Similarly, four

linear equations are extracted from (37) by multiplying (37) by each of four

odd testing functions and integrating over the slot.

Called {W ii1,2,3,4}, the even testing functions are defined by
Callede 21-2

W= I 0/ i=1,2,3,4 (40)

eMultiplying (32) by W and integrating over the slot, we obtain four equa-

tions, one for each value of i. In matrix notation, these equations are

yee 1e (41)

where 4e is the colum vectorwhose jth element , Vj and Ye is the

4 x 4 matrix whose elements are given by

Fe S e0 Fe Se
ye ip lp + J'(ka) I in lnil H(2(2) , i=1,2,3,4 (42)

H(2)(ka) n=0 J'(ka) H (2)' (ka)
Pn~p n n

o e e e e i = 1,2,3,4
e F in'(S j + C (43)Yij =  ( 2 ) , (43) -

n-0 J'(ka) HC2 )' (
np n n (ka) L2 2,3,4

where "
o o -

en

in " F cocon) d¢(4
The coefficient F is evaluated in Ell, Appendix B]. In (41)( 4 is the

in
Column vector whose elements are given by 'ne

eo 00 n J F in co s (na ),,,
I 2j , 1 , 1-1,2,3,4 (45)li n- 2H (2 ) ' (ka) I"le

nO n
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The odd testing functions are defined by

o 21- i-k
W (4/$ o)2- i - 1,2.3,4 (46)Wi 0

We multiply (37) by W0 and integrate over the slot. Doing this for i1,2,3,
i

and 4, we obtain the matrix equation

yov .=i (47)

where ;o is the column vector whose jth element is Vs, and YO is the 4 x4 "

matrix whose elements are given by

F°  S°  0 F°  S°

yO ip I + J'(ka) I in In i=1,2,3,4 (48)
il H (2 ) '(ka) P n-l Jn(ka) H (2 ) '(ka)

P n~p n n

GoF0 0 0S os - 1,2,3,4
Y0 in Hjn(2) (49)

ij n-I J ' (ka) H '2) (ka)

n~p n n 2,3,4

where
1 21-l
1 in O 2i-1 sin (n ) d4 (50)

-$o
0 -- "0

The coefficient F in is evaluated in [i, Appendix B]. In (47) 1 is the

column vector whose elements are given by

jn 00 0 2 s in s (n)
Ii  2JTH 1, , i - 1,2,3,4 (51)

n1 Hl (ka)
n

Actually, (47)-(49) are valid only for p > 0. For p = 0, we multiplyo
(25) by Wi and integrate over the slot. Doing this for i = 1,2,3, and 4,

we obtain (47) with the elements of ;o given by %

%

Vj V (52)

with the elements of YO given by (52)

0%
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F° S0

Y in jn (53)

n-I J'(ka) H (2 ) ' (ka)
n n

and with the elements of 1 given by (51).

After (41) is solved for 4e, Me will be given by (7) with

(Ve, J-1,2,3,4} given by (31). After (47) is solved for V, Mo will be
j

given by (23) with {Vo, j - 1,2,3,4} given by (36) for p # 0 and,

according to (52), by

V0 = , j = 1,2,3,4 (54)

for p = 0. Finally, M is given by (4) where Me and M° have been described

in the previous two sentences:

4
u (VeMe M) (55)
- ] i M ii

The magnetic field in Fig. 2 is u N where

zz

Hz - (56)

(-M) p <a

where Hsc, H a (M), and Hb (-M) are the z components of the magnetic fields
z z- z-

due to the incident wave, M, and -M, respectively. From (1) and [14,

eqs. (5-114) and (5-115)], we obtain

00 J' (ka)
n n____ (2) .. ~Hsc E (J (k) n H (ko)] cos (n(4-ct)) (57)

z nO n H 2 '(ka) n
n

From (55), we have

-.

~ 'p0
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4
1(M (u M) + (u M.))

zz j z -z-

(58)

4 1
b e b e ob 0

z j=1 z -z j j z -iwr a J eb -uMre.

where H(uM e ) and H z-u M e are given by (11). Similarly,
z --z j z --zi

Ha 0 
S nH n(2 ) (kP) sin (nW)

zz( M1 ) j n n-l H(2)'(ka)
n

(59)

b0 S J (kp) sin (nq)
H bC-u M o S in n

z -zi T n J'(ka).-- n=l n

so that (58) expands to

4 00) e H (2)(kp) cos (n) 4 S0 H(2 )(kP) sin (n)
H a(M) - I ~Ve( I inn -) + I Vo( I ijnn (2)nHl H( )k(ka

Z J-i J n-n0 H() k j-l J n-i H (2'(ka)
n n

(60)

4 0 S J(kp) cos (n)
H (-M) I n- [ V ) + J (kp) cos (p4)

M J'(ka) p pJ-i n-O n
n~p

4 S (kP) sin (W

+ IV J ( n + 0 J (kp) sin (po)] (61)

Jii J nii J(ka) p p

n~p

where

e ~ 4 eBe - 1~ ~ e (62
p '(ka) Vj P (62).
P p Ji -

B0 - 1 4V 0 S0 (3p J'(ka) Vj jp (63)
p j 1

If p - 0, the B0 term is to be omitted from (61).
p
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Do Be and B0 remain finite as J'(ka) approaches zero? In view
p p p

of (30), substitution of (31) into (62) gives

Be 5e e(4
Bp i p V1 (4

Substituting (36) into (63) and using (35), we obtain

B0 - p Vl ' pO0 (65)
p 1ip

As given by (64) and (65), Be and B° remain finite as J'(ka) approach
p p p

zero.

When P 0, (61) reduces to

-e Se

b T1 1 10
H (-M) =p 0 (66)

4 e S e  
0

niJ'(ka) j jo
0 j - /

Equation (66) was obtained by using (64) and [14, eqs. (D-9) and (D-10)]

Jn(O)- (67)

, n >1

In the preceding three paragraphs, we found u H , the magnetic

field in Fig. 2. Called E, the electric field in Fig. 2 is given by [14,

eq. (5-19)] E ,m- 4 l(VH- xu_ ) (68)
-- k z -

Since M was determined such that the situation in Fig. 2 is equivalent to

that in Fig. 1, the fields in Fig. 2 are the same as those in Fig. 1. Thus,

we have obtained our objective, which was to find the fields everywhere

in Fig. 1. vI.

I 'I"*Pt 1J~. . ~ p
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V. BISTATIC SCATTERING WIDTH

The bistatic scattering width is called a and is defined by

[15, eq. (3-49)]

H
s

where Hi is the z component of the incident magnetic field given by (1)
z

and H is the z component of the scattered magnetic field given by
z

Hs = H - Hi  (70)z z z

where H is the total magnetic field given by (56). Substitution of
z

(56) into (70) gives

s =a sc i
H -H(M) + Hs ' - H , 

> a (71)
z z- z z

It is evident from (1) and [14, eq. (5-113)] that

CO

Hi - IC j n Jn(kp) cos (n(4-a)) (72)
z n= n~ nz n0

Subtracting (72) from (57), we obtain

= o nn n
00 Hi n j n (ka) H(2 )(kP) cos (n(¢-c))

Zc I nn0a Hn(az z n= (2)' k) :
n (.a

Substitution of (60) and (73) into (71) gives

o 4 H(2 (kp) cos (np)
H6  Vee, n n-z _ ( e e Jn(ka) cos (na)] H 2)
z n n  (2 ) '

C 4 H (2) (ko) sin (nW)

+ V ( o 0 ) 2jnjn(ka) sin (n)] (n 2 (74)
n-i J in n H(  (ka)

n

W 11111111111111I C a q •.
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Substituting (74) into (69), recognizing that IH i 1, using the
z

large argument formula [14, eq. (D-13)]

(2) n eJk,
H (kp) z Ai P-j ne (75)

and dividing both sides of (69) by na, we obtain
':C.-

4 4 ecos(ni '
a _4 [JVSen) -V(- 1 )nj(k) cos (n)] (no)
na irka nO H(2)'

n

0 .n+l 4
+ I [ I o(n. ) - 2 (_1)n J,(ka) sin ()] sin (n4) 12 (76)

n-l i-l H (ka)
n

If there were no slit, then {Ve , V= 0 =, j=1,2,3,4} and (76) wouldj j

reduce to a quantity called SC /7ra:

s c  V n(ka) cos (n(-)) 2

-a k In-o H(2)'( )(77)
n1

The quantity asc /na is the normalized bistatic scattering width of the

closed cylinder, i.e., the short-circuit normalized bistatic scattering N

width. This width is that associated with the well-known scattering

pattern [14, eq. (5-117)] of the closed cylinder.

VI. NARROW SLOT AT RESONANCE

If the slot aperture is narrow and if the associated cavity is

resonant, that is, if there is a non-negative integer p such that

J'(ka) - 0, then we can show that the slit cylinder scatters nearly the

same as the corresponding closed cylinder and we can find approximate .

expressions for the field components inside the cylinder. Thus, we will

,---.
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have values against which we can check field components and bistatic

scattering widths computed from formulas in Sections IV and V.
.N %.

In order to do what is proposed in the first sentence of this

section, we consider

j jsc + jA (78)

__.

where Jsc is the electric current that would be induced on the cor- ..

responding closed cylinder:

sc [Hsc] (79)
-) z p=a

Moreover, JA is the electric current at p= a given by

P - pU(Ae cos (po) + A sin (po)) (80)
-- p %

e 0
where A and A are constants. In (79) and (80), is the unit vector '

p p

in the direction. The z component of magnetic field, Hz, and the 4

component of electric field, EA, produced by I radiating in the homoge-

neous medium with constitutive parameters p and c are given by

J (kp) e
a"

Jpk)(A cs(p ) + A° sin (p) P < a
Jp(k a ) p

z (81)

0 > a

J(k) (Ae cos (p4) + Ap sin (p4)) , p < a "-p.

JP a p p p..

p (82)

0 p >_

The p component of electric field produced by J is not considered here.

Since E/n vanishes at P = a, the 4 directed electric field

produced by J of (78) cancels the 4 directed incident electric field

-%.

'9 5 a, .- p.---- .~p\ 5~p.p.% ~ *.-
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at p - a, Thus, if it did not spill over into the aperture, J would be

the true electric current induced on the slotted cylindrical surface. ,

Now, if Ae and A are adjusted so that both J and -0 vanish at ¢ = 0,
p p d

then J will be small in the aperture and therefore will be a good approxi-

mation to the true electric current. Here, J is the component of J.
- .

Actually, if p = 0, then A ° drops out of J and only J can be made top-

vanish at € = 0. Substituting (79) and (80) into (78), using (20), and
dJl

forcing J and d! to vanish at =0, we obtaindo 
.

Ae 4 00 Cnn cos (no)

p -Tka . 2H (2 ) ' (ka)

n=0 n

Ao= - 4J njn sin (r0)Ap pwrka n1H () P 0 (84)

n=l H 2 (ka)
n

In the preceding paragraph, we found that the electric current

on the slit cylinder is approximately J of (78)-(80) with A
e and A 0

p P

given by (83) and (84) if the slit is narrow and if the associated cavity

is resonant. Thus, the field that exists in the presence of the slit

cylinder is approximately the field which would exist in the presence of

Athe associated closed cylinder plus the field produced by J . Since there

is no field inside the associated closed cylinder, the field inside the

slit cylinder is approximately the field due to J_ A. Substituting (83)

and (84) into (81) and (82) and using [14, eq. (D-17)] and the fact that

J'(ka) - 0, we express the components (81) and (82) of this interior

field due to jA as

0 %
*J , '
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nEn o n cos (na) 1 0 jns

H - 2jY;(ka)Jp(kp) [( - ) n cos(p)+- ( 1 ninp_)_
S pn-0 2H(2 ) (ka) P n-l i(2)' sin(pp)

n H 2 (ka)Pn n
(85)

n o

EA/ro - 2Y'(ka)j'(kp)[ O nj n sin (na ) sin(p4)]
n-O 2H 2n (ka) P 1 H 2n (ka) (86)

where the i/p terms are to be discarded if p=O. Here, Y p(ka) is the

Bessel function of the second kind of order p. The field components

(85) and (86) are approximately those inside the slit cylinder when the

slit is narrow and the associated cavity is resonant. Since, according

to (81) and (82), the field due to J vanishes outside the cylinder, we

deduce that the field outside this slit cylinder is approximately the

field that would exist outside the corresponding closed cylinder.

In the preceding paragraph, we have shown that, if the slit is

narrow and if the corresponding closed cylinder is resonant, then the

field components inside the slit cylinder are approximately (85) and

(86) and the field outside the cylinder is approximately the field which

would exist if there were no slit. Since neither (85) nor (86) depend on

the width of the slit, it is evident that the amount of TE field that enters

a resonant circular cylindrical cavity through an infinitely long but

narrow slit does not depend on the width of the slit.

VII. NUMERICAL RESULTS AND DISCUSSION

By means of a computer program that will be described in a *

forthcoming report , JE /Tl of (68) was calculated in the aperture, and

IE /fIof (68) and IHz I of (56) were calculated at the center of the

aperture and at the center of the cylinder. The normalized scattering

' N
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widths a/na of (76) and SC/Tla of (77) were also calculated at (Pc) =

(0', 0'), (180', 0), and (1800, 1800). Results of these calculations

obtained by truncating the summations with respect to n at n - 10,000 ,

are presented here.

The aperture field amplitude 1E /nl shown in Fig. 4 agrees well

with [1, Fig. 27] and [16, Fig. 11]. The data of Fig. 4 were obtained

by replacing (7) by

NN
Me = V Me NN < 4 (87)j=l 3'

if MN < 4, the matrix Yadthe column vectors and I in (41) were

truncated accordingly. In Fig. 4, the aperture field amplitude obtained

by using NN = I is nearly the same as that obtained by using NN = 4.

However, the field amplitude obtained by using NN = 1 is very different

from that obtained by using NN = 4 in the wider slit aperture of Fig. 5.

Nevertheless, the field amplitude obtained by using NN = 3 in Fig. 5 is

nearly the same as that obtained by using NN = 4. The curve for which

NN - 4 in Fig. 5 agrees with [2, Fig. 4].

Figure 6 shows a ka scan of iE/,In at the center (P=a, 4=0)

of the slit aperture in the cylinder of Fig. 1 for 0 = 50 and a = 0*.

The data of Fig. 6 and of all subsequent figures were obtained by using

NN - 4. In Fig. 7, the data of Fig. 6 are plotted on a logarithmic

scale. The peak of IE /nI at ka = 0.374 is probably due to the H-pol

low frequency resonance noted in [8, p. 519]. The three minima of "r

JE /ni occur very close to resonant values of ka. Resonant values of ka

are values of ka for which there is a non-negative integer p such that

J'(ka) - 0. After dipping to a minimum very close to a resonant value
p
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of ka, 1E hn ises sharply tc Lmum at a larger va a.

According to cussion in Sect IEh should app ro

at resonant x f ka as the wid :he aperture approa 'o.

The values of at the first s 3nant values of ka ilated

in Table 1. alues of IE /T11 3t exactly minimum For

instance, thE ed value of IE ~ its first minimum .6

rather than(

Figui -7s JH z at the of the aperture in inder

of Fig. 6. 1 9, the data of are plotted on a 1 AC

scale. TablP s IH I at the f ix resonant values The

correspondinj aperture result Iof (85) are also i

comparison. nt is excellent

Figui ows jE /nj at iter of the slit cy )f

Fig. 6. The Pt "o" on I E/ iotes evaluation at

In Fig. 11, t of Fig. 10 are -d on a logarithmic

Table 2 showE and the corre ig small aperture r
A0

lE /T11 of (F he first six re values of ka. In
*0

jE /T11 is sT) n I EA/nI1 -0 . i more IE~ /r)f1 agree- ith%

A/l 0 at th ~ sonant values !here IEA/r)

Figui ow H at the r of the slit cylin 'ig. 6.

In Fig. 13, t of Fig. 12 are 2d on a logarithmic

Table 2 showE nd the correspo 3mall aperture resu of

(85) at the J x resonant valu ka. In Table 2, JH iall

when 1Hl ( close agreement I with JHAJ at ka '06 I
is remarkabl( e, as observed .12, the curve of 'sus

ka is very st ka -3.831706. hl
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Table 1. Field amplitudes IE /li and IHzI at the center of the aperture

for resonant values of ka. o = 5° and a = 0*. For comparison,

1EA/M of (86) and IHAI of (85) are also tabulated.

ka JE Anj lE /TII IHI HA

1.841184 0.039 0.0 1.867 1.866

3.054237 0.065 0.0 1.921 1.914

3.831706 0.040 0.0 1.944 1.945

4.20119 0.098 0.0 1.954 1.938

5.31755 0.132 0.0 1.983 1.954

5.33144 0.042 0.0 1.955 1.953

•.. ?',:_

N.A

% *a



'-

31

.4'"
4

0
0

U

U
0
LA

U

o

0
4.'

4J
I.'

0.

'I

'44
Cu 0

I.'
_________ Cu

*1
U

Ji

4-J
Cu

N

A
'4 4.

.LJ
9.4

a
- 4..-

444__________________________________ 9-4 4

~Z4 4.

'-.4.- .4

S S m c~j .4 0 -4 p~z4

N 'As.

pp

0
4.' '~

*44 %*
.4.'..

4' ,~. I. -. *~S~4*~*. ~ ~ ~ *~A .~ ~ 1%' 4 74. ~ '.4



- -ga w-n.. r. rw-.,..!"yfln1tfll fd1 n LM~ N ' RnI W fl M t tu

32

0

00

I o

0

4)0

4.4

cu

I.'p
4" Ol

~~%



33

4 1'

V

0

co

44

(20

% %



34

0

.o g

00
In

o0
* 5%.

w' 0

*0
in,-

UQ

4-We

.4or



35

Table 2. Field amplitudes JE /1o and IH i at the centerZ

of the cylinder for resonant values of ka. o = 5=and a 0*.

AA

For comparison, lEA/no of (86) and HAzl of (85) are also
0

tabulated. The subscript "o" on lE/nl and 1E / denotes

evaluation at = 00.

ka IE/TIl lE /i o  IHz! IH.

1.841184 1.606 1.604 3 x 10-6 0.0 1..

3.054237 2 x 10- 5  0.0 3 x 10- 5  0.0

3.831706 4 x 106 0.0 4.826 4.829

4.20119 X 10-  0.0 3 x 10 0.0

5.31755 0.018 0.0 3 x 10-4  0.0

5.33144 2.824 2.822 5 x 10- 6  0.0

%

-U".,.,

.. '
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The solid curve in Fig. 14 is a ka scan of the normalized back-

scattering width G/ia of the cylinder of Fig. 6. This 0/7a is given by

(76) with 0 -ot- 00. The dashed curve in Fig. 14 is the normalized

back-scattering width of the corresponding closed cylinder, given by (77)

with 4 -c- 0*. Comparing the solid curve in Fig. 14 with that in the

left-hand plot of [8, Fig. 19b], we note that the first peak of the solid

curve in Fig. 14 is slightly higher than that of the solid curve in [8].

Furthermore, the spike in the neighborhood of ka = 5.32 is more pro-

nounced on the solid curve of Fig. 14 than on the solid curve in [8].

In Fig. 15, the normalized forward scattering width a/fra of the

cylinder of Fig. 6 is plotted solid and the normalized forward scattering

width of the corresponding closed cylinder is plotted dashed. These

scattering widths were calculated by setting 4 = 1800 and a = 0* in (76)

and (77). Comparing the solid curve in Fig. 15 with that in the right-

hand plot of [8, Fig. 19b], we observe that the spike in the neighborhood l"

of ka - 5.32 protrudes down farther in Fig. 15 than in [8].

The solid curve in Fig. 16 is a ka scan of the normalized back-

scattering width 0/ira of the cylinder of Fig. 14 with a = 1800 instead

of a - 00. This a/ra is given by (76) with 4 =ct= 1800. The dashed curve

in Fig. 16 is the normalized back-scattering width of the corresponding

closed cylinder, given by (77) with 4 =a= 1800. In Fig. 16. the aperture NS

is in the shadow region whereas in Figs. 14 and 15, the aperture was

directly illuminated. By reciprocity [15, p. 45], the forward scattering

width of the cylinder of Fig. 16 is exactly the same as the forward scatter-

ing width of the cylinder of Fig. 14. Comparing the solid curve in Fig. 16

with that in [8, Fig. 21a], we observe that the first peak of the solid 6

curve in Fig. 16 is slightly higher than that of the solid curve in [8].
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In Section VI, it was shown that, at resonant values of ka, gN,

scattering from a cylinder with a narrow slit aperture is approximately

the same as scattering from the corresponding closed cylinder. This

means that the solid and dashed curves in each of Figs. 14, 15, and 16

should cross each other at values of ka very close to the resonant values

of ka. Labelling the solid curve a/na and the dashed curve a sC/a, we

computed o/a and asc/ra of Figs. 14, 15, and 16 at the first six VP

resonant values of ka, given in the first column of Table 1. Reassuringly,

the difference between each of these values of a/7a and the corresponding

value of asc/7a was always less than 1%. In Fig. 14, 0/7a is correct at

ka - 5.31755 and at ka - 5.33144 because it agrees with a sC/a there.

Correctness of a/7a at these values of ka in Fig. 14 is meaningful because

o/ra is changing so rapidly there. Reading our numerical values of a/ra

in the neighborhood of ka - 5.32, we see that 0/7a is 0.973 at ka = 5.31755,

rises to 1.49 at ka = 5.32667, dips to 0.048 at ka = 5.326885, and then

rises to 0.979 at ka = 5.33144!

The precise locations of the peaks of the solid curves in Figs. 14,

15, and 16 are pinpointed in Table 3. The entries in any column of Table 3

are the values of ka at the peaks of the solid curve in the figure whose

number appears at the head of the column. Some spaces in Table 3 were left

empty in order to obtain alignment of the abscissas of similar maxima.

%
U.
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Table 3. Values of ka at the peaks of the solid curves in Figs. 14, -

15, and 16.

Fig. 14 Fig. 15 Fig. 16

0.375 0.3725 0.3755

0.800 0.91

1.958 1.952 1.96 41

2.30 2.22

3.149 3.11 3.153

3.40

3.8535 3.83 3.866

4.292 4.20 4.305

5.27 4.56

5.32667 5.32698 5.32677

5.444 5.47

5.72

.1%

%9 "
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APPENDIX A

EVALUATION OF S
e  AND S.
jn jn

Changing the variable of integration from to

x -o/o (A-I)

in (16) and (26), we obtain

,e on x 2 - 2 cos (bx)
S jn -jx) dx (A-2)

o 1 .
x2j-1sin (bx)d

jn 7 f dx (A-3)-nit - -x2 .2 e

where
b =n (A-4)

In regard to (A-2) and (A-3), it is known that [17, formulas 3.752(2.)

and 3.753(2.)]

1 TJl (b) A5

J cos (bx) dx b (A-5)

-1

cos (bx) dx = J (b) (A-6)

Assuming that n 0 0, comparison of (A-6) with (A-2) gives Ile

e
Sin =0 oJo(b) (A-7)

Integrating the right-hand side of (A-3) by parts, we obtain

0  b~
in iT -x cos (bx) dx (A-8)

-1

which, in view of (A-5), reduces to

-V ~ ; 7
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n 0 oJl (b) (A-9) 'a
ino 1

Seeking a recurrence relation for Se when n #0, we use the identityin

x2J-2 =21-4 (i l -x 2) (A-10)

to recast (A-2) as

Sj 2j-4 - 2 cos (bx) dx (A-Il)

which, upon integration by parts, becomes

1N

Se = S e + sin (bx) d (x2j-4 x 2 ) dx (A-12)

in J-l,n bi fjd
-i

Performing the indicated differentiation in (A-12), we obtain

S e - (2j-3) b S2(J-2) n 0 j=2,3,... (A-13)
in S-on b j-ln b 5j2,no

where the S_ term is to be omitted when j=2.
J-2,n

Seeking a recurrence relation for Sin, we use an identity similar to

(A-10) to recast (A-3) as

Sjno _ -- ° 'i x 1-

n= x 2 J - 3  x2 sin (bx) dx (A-14)
J-n -i

An integration by parts changes (A-14) to

1I

n 0 S0l 4 0 cos (bx) d (x2j-3 - x2) dx (A-15) :5

n = J-~n 7T- d
-i' '

Performing the indicated differentiation in (A-15), we obtain the

recurrence relation

S0 2(j-l) e _ (2j-3) .e
in = Sj-l,n b in b 3j-l,n ,j=2,3,... (A-16)

Using (A-13) and (A-16) to recur up from (A-7) and (A-9), we obtain

FI
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S bJ 0(b)A17
en o

S 1  (b -(1-11(b

S 2n~ b n 1 b (A-18)

2_'

Se (b -3) (bJ 0- 2J 1 ) (A-19)

e (b 4 _9b 2 +60) Wb0(b) - 3(b 4 
-11 b 2 + 40) J1 (b) (-0

= bJ 1 (b) (A-21)
ln n

0 (b -_2) J1I(b) + bJ (b)
S2n - nb (-2

42 2
(b -7b +24) J (b) + 2b (b -6) J (b)

nb (A-2 3)

nnb

Expressions (A-19), (A-20), (A-22), (A-23), and (A-24) become inde-

I.

2 2 4 4 6 6 8 8 10 10
sbl bx + bx _b x b x b x%
cox-24 - 720- 40320 -3628800 (-5

2ncounter integrals I 2jdefined by

2j

x2 j , j 0,1,2,... (A-26)

is evident from [17, formula 3.248(3.)] that

M2 iT(2jl)!! 1 01,,. (A-27) ~ '

re

(2j-1)11 (A-28) A

1. 3-5 ... 2j-l, j > 1

==mo



and

(2j)!! )1 j0(A-29)

246..2j j > 1

From (A-27), we obtain S

7 T
0

I4 = 3Tr/8 w

1 6 = 57r/16

1 8 = 357r/128 (A-30)

1 = 63Tr/256

1 12 ' 2317r/1024

1 14 ' 4291T/2048

1 16 '6435rr/32768

I = 1215571165536
18

In view of (A-30), substitution of (A-25) into (A-2) gives

Se no b2 +b4 _b6 + b8 b10 (-1
in 2 [1 4 64 -2304 147456 14745600~ A1

e no 3 2  4 6 8 10
S2  [1 nb -b 7b- + b - lib (A-32)2n 4 12 9216 81920 88473600

e 3cn~ b2  4 6 8 1
e n o 5b 35b 7b~ lib 143b 0

3n 16 1 2- 1152 T6 780 +737280 -928972800 (A-33)

e 5c n 0 7b 2  21b 4  77b 6  143b 8  143b 1 0

5 4n 32 [1 6- 6 4 0 -6800 +8601600 -8257536001 (A-34)

When b < 2, we approximate sin (bx) in (A-3) by (18, formula 415.01]

3 b~ 3  b5x5  7 ~ 7  9 ~ 9  b1
sin (bx) - bx - bx + - - xb x(-5

6 120 5040 362880 -39916800 (-5
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We substitute (A-35) into (A-3) and use (A-30) in order to obtain

b2 4 6 8 10 3
S [ + b+ b b(A-36)
in [ - + 192 9216 +737280 88473600A

S°  35b 2 7b4  b6  llb8 13b10 (

2n 8 36 1152 7680 6635520 928972800(

0 0~ 7b 21 - + 143b8  13b %
S3n --6I 48- 3200 76800 77414400 825753600 ]  (A-38)

S 35b [1 3 + b4  143b6  + 143b8  17b 0  (A-39)
4n 128 20 1600 940800 72253440 1000432246A

0

•, .,4 •
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